Transfer Learning for Time Series Anomaly Detection
نویسندگان
چکیده
Currently, time series anomaly detection is attracting significant interest. This is especially true in industry, where companies continuously monitor all aspects of production processes using various sensors. In this context, methods that automatically detect anomalous behavior in the collected data could have a large impact. Unfortunately, for a variety of reasons, it is often difficult to collect large labeled data sets for anomaly detection problems. Typically, only a few data sets will contain labeled data, and each of these will only have a very small number of labeled examples. This makes it difficult to treat anomaly detection as a supervised learning problem. In this paper, we explore using transfer learning in a time-series anomaly detection setting. Our algorithm attempts to transfer labeled examples from a source domain to a target domain where no labels are available. The approach leverages the insight that anomalies are infrequent and unexpected to decide whether or not to transfer a labeled instance to the target domain. Once the transfer is complete, we construct a nearest-neighbor classifier in the target domain, with dynamic time warping as the similarity measure. An experimental evaluation on a number of real-world data sets shows that the overall approach is promising, and that it outperforms unsupervised anomaly detection in the target domain.
منابع مشابه
Greenhouse: A Zero-Positive Machine Learning System for Time-Series Anomaly Detection
This short paper describes our ongoing research on Greenhouse a zero-positive machine learning system for time-series anomaly detection.
متن کاملA Hybrid Framework for Building an Efficient Incremental Intrusion Detection System
In this paper, a boosting-based incremental hybrid intrusion detection system is introduced. This system combines incremental misuse detection and incremental anomaly detection. We use boosting ensemble of weak classifiers to implement misuse intrusion detection system. It can identify new classes types of intrusions that do not exist in the training dataset for incremental misuse detection. As...
متن کاملThermal anomalies detection before earthquake using three filters (Fourier, Wavelet and Logarithmic Differential Filter), A Case Study of two Earthquakes in Iran
Earthquake is one of the most destructive natural phenomena which has human and financial losses. The existence of an efficient prediction system and early warning system will be useful for reducing effects of destroying earthquake. In this research, the soil temperature time-series data, obtained from three meteorological station, using three filters (Fourier, Wavelet and Logarithmic Different...
متن کاملA Novel Ensemble Approach for Anomaly Detection in Wireless Sensor Networks Using Time-overlapped Sliding Windows
One of the most important issues concerning the sensor data in the Wireless Sensor Networks (WSNs) is the unexpected data which are acquired from the sensors. Today, there are numerous approaches for detecting anomalies in the WSNs, most of which are based on machine learning methods. In this research, we present a heuristic method based on the concept of “ensemble of classifiers” of data minin...
متن کاملLow Latency Anomaly Detection and Bayesian Network Prediction of Anomaly Likelihood
We develop a supervised machine learning model that detects anomalies in systems in real time. Our model processes unbounded streams of data into time series which then form the basis of a low-latency anomaly detection model. Moreover, we extend our preliminary goal of just anomaly detection to simultaneous anomaly prediction. We approach this very challenging problem by developing a Bayesian N...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017